Jump to content

Sonification

From Wikipedia, the free encyclopedia
Video of air pollution data from Beijing being conveyed as a piece of music

Sonification is the use of non-speech audio to convey information or perceptualize data.[1] Auditory perception has advantages in temporal, spatial, amplitude, and frequency resolution that open possibilities as an alternative or complement to visualization techniques.

For example, the rate of clicking of a Geiger counter conveys the level of radiation in the immediate vicinity of the device.

Though many experiments with data sonification have been explored in forums such as the International Community for Auditory Display (ICAD), sonification faces many challenges to widespread use for presenting and analyzing data. For example, studies show it is difficult, but essential, to provide adequate context for interpreting sonifications of data.[1][2] Many sonification attempts are coded from scratch due to the lack of flexible tooling for sonification research and data exploration.[3]

History

[edit]

The Geiger counter, invented in 1908, is one of the earliest and most successful applications of sonification. A Geiger counter has a tube of low-pressure gas; each particle detected produces a pulse of current when it ionizes the gas, producing an audio click. The original version was only capable of detecting alpha particles. In 1928, Geiger and Walther Müller (a PhD student of Geiger) improved the counter so that it could detect more types of ionizing radiation.

In 1913, Dr. Edmund Fournier d'Albe of University of Birmingham invented the optophone, which used selenium photosensors to detect black print and convert it into an audible output.[4] A blind reader could hold a book up to the device and hold an apparatus to the area she wanted to read. The optophone played a set group of notes: g c' d' e' g' b' c e. Each note corresponded with a position on the optophone's reading area, and that note was silenced if black ink was sensed. Thus, the missing notes indicated the positions where black ink was on the page and could be used to read.

Pollack and Ficks published the first perceptual experiments on the transmission of information via auditory display in 1954.[5] They experimented with combining sound dimensions such as timing, frequency, loudness, duration, and spatialization and found that they could get subjects to register changes in multiple dimensions at once. These experiments did not get into much more detail than that, since each dimension had only two possible values.

In 1970, Nonesuch Records released a new electronic music composition by the American composer Charles Dodge, "The Earth's Magnetic Field." It was produced at the Columbia-Princeton Electronic Music Center. As the title suggests, the composition's electronic sounds were synthesized from data from the earth's magnetic field. As such, it may well be the first sonification of scientific data for artistic, rather than scientific, purposes.[6]

John M. Chambers, Max Mathews, and F.R. Moore at Bell Laboratories did the earliest work on auditory graphing in their "Auditory Data Inspection" technical memorandum in 1974.[7] They augmented a scatterplot using sounds that varied along frequency, spectral content, and amplitude modulation dimensions to use in classification. They did not do any formal assessment of the effectiveness of these experiments.[8]

In 1976, philosopher of technology, Don Ihde, wrote, "Just as science seems to produce an infinite set of visual images for virtually all of its phenomena--atoms to galaxies are familiar to us from coffee table books to science magazines; so 'musics,' too, could be produced from the same data that produces visualizations."[9] This appears to be one of the earliest references to sonification as a creative practice.

In early 1982 Sara Bly of the University of California, Davis, released two publications - with examples - of her work on the use of computer-generated sound to present data. At the time, the field of scientific visualization was gaining momentum. Among other things, her studies and the accompanying examples compared the properties between visual and aural presentation, demonstrating that "Sound offers and enhancement and an alternative to graphic tools." Her work provides early experiment-based data to help inform matching appropriate data representation to type and purpose. [10] [11]

Also in the 1980s, pulse oximeters came into widespread use. Pulse oximeters can sonify oxygen concentration of blood by emitting higher pitches for higher concentrations. However, in practice this particular feature of pulse oximeters may not be widely utilized by medical professionals because of the risk of too many audio stimuli in medical environments.[12]

In 1990, the National Center for Supercomputing Applications began generating scientific data sonifications and visualizations from the same source data and a paper describing this work was presented at the June 1991 SPIE Conference on Extracting Meaning from Complex Data.[13] Included in the supporting information for the paper was a video, winner of the 1991 Nicograph Multimedia Grand Prize, comprising several data visualizations paired with their corresponding data sonifications.

In 1992, the International Community for Auditory Display (ICAD) was founded by Gregory Kramer as a forum for research on auditory display which includes data sonification. ICAD has since become a home for researchers from many different disciplines interested in the use of sound to convey information through its conference and peer-reviewed proceedings.[14]

In May 2022, NASA reported the sonification (converting astronomical data associated with pressure waves into sound) of the black hole at the center of the Perseus galaxy cluster.[15][16]

In 2024, Adhyâropa Records released The Volcano Listening Project by Leif Karlstrom, which merges geophysics research and computer music synthesis with acoustic instrumental and vocal performances by Billy Contreras, Todd Sickafoose, and other acoustic musicians.[17]

Some existing applications and projects

[edit]

Sonification techniques

[edit]

Many different components can be altered to change the user's perception of the sound, and in turn, their perception of the underlying information being portrayed. Often, an increase or decrease in some level in this information is indicated by an increase or decrease in pitch, amplitude or tempo, but could also be indicated by varying other less commonly used components. For example, a stock market price could be portrayed by rising pitch as the stock price rose, and lowering pitch as it fell. To allow the user to determine that more than one stock was being portrayed, different timbres or brightnesses might be used for the different stocks, or they may be played to the user from different points in space, for example, through different sides of their headphones.

Many studies have been undertaken to try to find the best techniques for various types of information to be presented, and as yet, no conclusive set of techniques to be used has been formulated. As the area of sonification is still considered to be in its infancy, current studies are working towards determining the best set of sound components to vary in different situations.

Several different techniques for auditory rendering of data can be categorized:

An alternative approach to traditional sonification is "sonification by replacement", for example Pulsed Melodic Affective Processing (PMAP).[58][59][60] In PMAP rather than sonifying a data stream, the computational protocol is musical data itself, for example MIDI. The data stream represents a non-musical state: in PMAP an affective state. Calculations can then be done directly on the musical data, and the results can be listened to with the minimum of translation.

See also

[edit]

References

[edit]
  1. ^ a b Kramer, Gregory, ed. (1994). Auditory Display: Sonification, Audification, and Auditory Interfaces. Santa Fe Institute Studies in the Sciences of Complexity. Vol. Proceedings Volume XVIII. Reading, MA: Addison-Wesley. ISBN 978-0-201-62603-2.
  2. ^ Smith, Daniel R.; Walker, Bruce N. (2005). "Effects of Auditory Context Cues and Training on Performance of a Point Estimation Sonification Task". Journal of Applied Cognitive Psychology. 19 (8): 1065–1087. doi:10.1002/acp.1146.
  3. ^ Flowers, J. H. (2005), "Thirteen years of reflection on auditory graphing: Promises, pitfalls, and potential new directions" (PDF), in Brazil, Eoin (ed.), Proceedings of the 11th International Conference on Auditory Display, pp. 406–409
  4. ^ Fournier d'Albe, E. E. (May 1914), "On a Type-Reading Optophone", Proceedings of the Royal Society of London
  5. ^ Pollack, I. & Ficks, L. (1954), "Information of elementary multidimensional auditory displays", Journal of the Acoustical Society of America, 26 (1): 136, Bibcode:1954ASAJ...26Q.136P, doi:10.1121/1.1917759
  6. ^ Dodge, C. (1970), The Earth's Magnetic Field., vol. Nonesuch Records-H-71250
  7. ^ Chambers, J. M.; Mathews, M. V.; Moore, F. R (1974), Auditory Data Inspection (Technical Memorandum), AT&T Bell Laboratories, 74-1214-20
  8. ^ Frysinger, S. P. (2005), "A brief history of auditory data representation to the 1980s" (PDF), in Brazil, Eoin (ed.), Proceedings of the 11th International Conference on Auditory Display, pp. 410–413
  9. ^ Ihde, Don (2007-10-04). Listening and Voice: Phenomenologies of Sound, Second Edition. SUNY Press. p. xvi. ISBN 978-0-7914-7256-9.
  10. ^ Bly, S. (1982), Sound and Computer Information Presentation, vol. Ph.D. Thesis, University of California, Davis, pp. 1–127, doi:10.2172/5221536
  11. ^ Bly, S., "Presenting information in sound", Proceedings of the 1982 conference on Human factors in computing systems - CHI '82, pp. 371–375, doi:10.1145/800049.801814
  12. ^ Craven, R M; McIndoe, A K (1999), "Continuous auditory monitoring—how much information do we register?" (PDF), British Journal of Anaesthesia, 83 (5): 747–749, doi:10.1093/bja/83.5.747, PMID 10690137[dead link]
  13. ^ Scaletti, C; Craig, A B (1991), "Using sound to extract meaning from complex data", Proc. SPIE 1459, Extracting Meaning from Complex Data: Processing, Display, Interaction II, 1459, doi:10.1117/12.44397
  14. ^ Kramer, G.; Walker, B.N. (2005), "Sound science: Marking ten international conferences on auditory display", ACM Transactions on Applied Perception, 2 (4): 383–388, CiteSeerX 10.1.1.88.7945, doi:10.1145/1101530.1101531, S2CID 1187647
  15. ^ Watzke, Megan; Porter, Molly; Mohon, Lee (4 May 2022). "New NASA Black Hole Sonifications with a Remix". NASA. Retrieved 11 May 2022.
  16. ^ Overbye, Dennis (7 May 2022). "Hear the Weird Sounds of a Black Hole Singing - As part of an effort to "sonify" the cosmos, researchers have converted the pressure waves from a black hole into an audible … something". The New York Times. Retrieved 11 May 2022.
  17. ^ "The Volcano Listening Project". volcanolisteningproject.org. Retrieved 16 September 2024.
  18. ^ Quincke, G. (1897). "Ein akustisches Thermometer für hohe und niedrige Temperaturen". Annalen der Physik. 299 (13): 66–71. Bibcode:1897AnP...299...66Q. doi:10.1002/andp.18972991311. ISSN 0003-3804.
  19. ^ Martin, Edward J.; Meagher, Thomas R.; Barker, Daniel. "Representing biodiversity decline data by manipulating familiar audio files to create emotional responses: A novel sonification method of soundwave-level deletion". Biological Conservation. 300: 110852. doi:10.1016/j.biocon.2024.110852.
  20. ^ Ismailogullari, Abdullah; Ziemer, Tim (2019). "Soundscape clock: Soundscape compositions that display the time of day". International Conference on Auditory Display. Vol. 25. pp. 91–95. doi:10.21785/icad2019.034. hdl:1853/61510. ISBN 978-0-9670904-6-7.
  21. ^ Yang, Jiajun; Hermann, Thomas (June 20–23, 2017). PARALLEL COMPUTING OF PARTICLE TRAJECTORY SONIFICATION TO ENABLE REAL-TIME INTERACTIVITY (PDF). The 23rd International Conference on Auditory Display.
  22. ^ Mannone, Maria (2018). "Knots, Music and DNA". Journal of Creative Music Systems. 2 (2). arXiv:2003.10884. doi:10.5920/jcms.2018.02. S2CID 64956325.
  23. ^ "PriceSquawk". pricesquawk.com. 15 January 2014.
  24. ^ "Justin Joque". justinjoque.com. Retrieved 2019-05-21.
  25. ^ LIGO Gravitational Wave Chirp, 11 February 2016, archived from the original on 2021-12-22, retrieved 2021-09-15
  26. ^ Banf, Michael; Blanz, Volker (2013). "Sonification of images for the visually impaired using a multi-level approach". Proceedings of the 4th Augmented Human International Conference. New York, New York, USA: ACM Press. pp. 162–169. doi:10.1145/2459236.2459264. ISBN 978-1-4503-1904-1. S2CID 7505236.
  27. ^ Banf, Michael; Mikalay, Ruben; Watzke, Baris; Blanz, Volker (June 2016). "PictureSensation – a mobile application to help the blind explore the visual world through touch and sound". Journal of Rehabilitation and Assistive Technologies Engineering. 3: 205566831667458. doi:10.1177/2055668316674582. ISSN 2055-6683. PMC 6453065. PMID 31186914.
  28. ^ Hunt, A.; Hermann, T.; Pauletto, S. (2004). "Interacting with sonification systems: closing the loop". Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004. pp. 879–884. doi:10.1109/IV.2004.1320244. ISBN 0-7695-2177-0. S2CID 9492137.
  29. ^ Thomas Hermann, and Andy Hunt. The Importance of Interaction in Sonification. Proceedings of ICAD Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6–9, 2004. Available: online
  30. ^ Sandra Pauletto and Andy Hunt. A Toolkit for Interactive Sonification. Proceedings of ICAD Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6–9, 2004. Available: online.
  31. ^ Kather, Jakob Nikolas; Hermann, Thomas; Bukschat, Yannick; Kramer, Tilmann; Schad, Lothar R.; Zöllner, Frank Gerrit (2017). "Polyphonic sonification of electrocardiography signals for diagnosis of cardiac pathologies". Scientific Reports. 7: Article-number 44549. Bibcode:2017NatSR...744549K. doi:10.1038/srep44549. PMC 5357951. PMID 28317848.
  32. ^ Edworthy, Judy (2013). "Medical audible alarms: a review". J Am Med Inform Assoc. 20 (3): 584–589. doi:10.1136/amiajnl-2012-001061. PMC 3628049. PMID 23100127.
  33. ^ Woerdeman, Peter A.; Willems, Peter W.A.; Noordsmans, Herke Jan; Berkelbach van der Sprenken, Jan Willem (2009). "Auditory feedback during frameless image-guided surgery in a phantom model and initial clinical experience". J Neurosurg. 110 (2): 257–262. doi:10.3171/2008.3.17431. PMID 18928352.
  34. ^ Ziemer, Tim; Black, David (2017). "Psychoacoustically motivated sonification for surgeons". International Journal of Computer Assisted Radiology and Surgery. 12 ((Suppl 1):1): 265–266. arXiv:1611.04138. doi:10.1007/s11548-017-1588-3. PMID 28527024. S2CID 51971992.
  35. ^ Ziemer, Tim; Black, David; Schultheis, Holger (2017). Psychoacoustic sonification design for navigation in surgical interventions. Proceedings of Meetings on Acoustics. Vol. 30. p. 050005. doi:10.1121/2.0000557.
  36. ^ Ziemer, Tim; Black, David (2017). "Psychoacoustic sonification for tracked medical instrument guidance". The Journal of the Acoustical Society of America. 141 (5): 3694. Bibcode:2017ASAJ..141.3694Z. doi:10.1121/1.4988051.
  37. ^ CURAT. "Games and Training for Minimally Invasive Surgery". CURAT Project. University of Bremen. Retrieved 15 July 2020.
  38. ^ Nagel, F; Stter, F R; Degara, N; Balke, S; Worrall, D (2014). "Fast and accurate guidance - response times to navigational sounds". International Conference on Auditory Display. hdl:1853/52058.
  39. ^ Florez, L (1936). "True blind flight". J Aeronaut Sci. 3 (5): 168–170. doi:10.2514/8.176.
  40. ^ a b Ziemer, Tim; Schultheis, Holger; Black, David; Kikinis, Ron (2018). "Psychoacoustical Interactive Sonification for Short-Range Navigation". Acta Acustica United with Acustica. 104 (6): 1075–1093. doi:10.3813/AAA.919273. S2CID 125466508.
  41. ^ a b Ziemer, Tim; Schultheis, Holger (2018). "Psychoacoustic auditory display for navigation: an auditory assistance system for spatial orientation tasks". Journal on Multimodal User Interfaces. 2018 (Special Issue: Interactive Sonification): 205–218. doi:10.1007/s12193-018-0282-2. S2CID 53721138. Retrieved 24 January 2019.
  42. ^ "Accessible Oceans: Exploring Ocean Data Through Sound". Retrieved January 9, 2025.
  43. ^ Scaletti C, Rickard MM, Hebel KJ, Pogorelov TV, Taylor SA, Gruebele M (Feb 2022). "Sonification-enhanced lattice model animations for teaching the protein folding reaction". Journal of Chemical Education. 99 (3): 1220–30. doi:10.1021/acs.jchemed.1c00857.
  44. ^ Scaletti C, Samuel Russell PP, Hebel KJ, Rickard MM, Boob M, Danksagmüller F, Taylor SA, Pogorelov TV, Gruebele M (May 2024). "Hydrogen bonding heterogeneity correlates with protein folding transition state passage time as revealed by data sonification". Proceedings of the National Academy of Sciences of the United States of America. 121 (22): 1–8. doi:10.1073/pnas.2319094121. PMC 11145292.
  45. ^ Hinckfuss, Kelly; Sanderson, Penelope; Loeb, Robert G.; Liley, Helen G.; Liu, David (2016). "Novel Pulse Oximetry Sonifications for Neonatal Oxygen Saturation Monitoring". Human Factors. 58 (2): 344–359. doi:10.1177/0018720815617406. PMID 26715687. S2CID 23156157.
  46. ^ Sanderson, Penelope M.; Watson, Marcus O.; Russell, John (2005). "Advanced Patient Monitoring Displays: Tools for Continuous Informing". Anesthesia & Analgesia. 101 (1): 161–168. doi:10.1213/01.ANE.0000154080.67496.AE. PMID 15976225.
  47. ^ Schwarz, Sebastian; Ziemer, Tim (2019). "A psychoacoustic sound design for pulse oximetry". International Conference on Auditory Display. Vol. 25. pp. 214–221. doi:10.21785/icad2019.024. hdl:1853/61504. ISBN 978-0-9670904-6-7.
  48. ^ "SPDF - Sonification". jcms.org.uk/. 2005-11-13. Archived from the original on 2005-11-13. Retrieved 2021-09-15.
  49. ^ Schuett, Jonathan H.; Winton, Riley J.; Batterman, Jared M.; Walker, Bruce N. (2014). "Auditory weather reports". Proceedings of the 9th Audio Mostly: A Conference on Interaction with Sound. AM '14. New York, NY, USA: ACM. pp. 17:1–17:7. doi:10.1145/2636879.2636898. ISBN 978-1-4503-3032-9. S2CID 5765787.
  50. ^ Polli, Andrea (July 6–9, 2004). ATMOSPHERICS/WEATHER WORKS: A MULTI-CHANNEL STORM SONIFICATION PROJECT (PDF). ICAD 04-Tenth Meeting of the International Conference on Auditory Display. Archived from the original (PDF) on 2021-07-11.
  51. ^ Silberman, S. (February 6, 2012). "Inside the Mind of a Synaesthete". PLOS ONE.
  52. ^ Winkler, Helena; Schade, Eve Emely Sophie; Kruesilp, Jatawan; Ahmadi, Fida. "Tiltification – The Spirit Level Using Sound". Tiltification. University of Bremen. Retrieved 21 April 2021.
  53. ^ Weidenfeld, J. September 28, 2013. "10 Cool Ways To Create Music With Technology". Listserve.
  54. ^ Byrne, M. February 14, 2012. "With Images for Your Earholes, Sonified Wins Augmented Reality with Custom Synesthesia". Vice / Motherboard
  55. ^ Barrass S. (2012) Digital Fabrication of Acoustic Sonifications, Journal of the Audio Engineering Society, September 2012. online
  56. ^ Barrass, S. and Best, G. (2008). Stream-based Sonification Diagrams. Proceedings of the 14th International Conference on Auditory Display, IRCAM Paris, 24–27 June 2008. online
  57. ^ Barrass S. (2009) Developing the Practice and Theory of Stream-based Sonification. Scan: Journal of Media Arts Culture, Macquarie University.
  58. ^ Kirke, Alexis; Miranda, Eduardo (2014-05-06). "Pulsed Melodic Affective Processing: Musical structures for increasing transparency in emotional computation". Simulation. 90 (5): 606. doi:10.1177/0037549714531060. hdl:10026.1/6621. S2CID 15555997.
  59. ^ "Towards Harmonic Extensions of Pulsed Melodic Affective Processing – Further Musical Structures for Increasing Transparency in Emotional Computation" (PDF). 2014-11-11. Retrieved 2017-06-05.
  60. ^ "A Hybrid Computer Case Study for Unconventional Virtual Computing". 2015-06-01. Retrieved 2017-06-05.
[edit]